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EFFECT OF DIFFERENT FACTORS ON THE ACCURACY OF THE SOLUTION
OF A PARAMETRIZED INVERSE PROBLEM OF HEAT CONDUCTION

0. M. Alifanov and A. V. Nenarokomov UDC 536.24

Results are presented for a mathematical simulation of the effect of the error
in approximation of the estimated function, the error in temperature measure-
ments, and the error in specifying measurements on the accuracy of the solution
of the parametrized boundary-value inverse problem.

Methods based on solving boundary-value inverse problems of heat conduction are widely
used at present in the experimental investigation of processes of heat interaction of a sol-
id body with the surrounding medium. In these problems we seek thermal boundary conditions
and restore the temperature field in the body based on results of thermal measurements at
separate internal points.

In many cases heat transfer in systems being investigated can be described with accur-
acy sufficient for practical purposes by the one-dimensional nonlinear heat equation

oT 5} oT
o S— == (\x() - ) T=T(% 0 X€0, 5, T€(tn . (1)
As boundary conditions for (1) we specify the initial temperature distribution
T (x, 0)=Ty(x), x€[0, bl (2)

and boundary conditions of the second kind

20, 9 g @, T (Tmn Tmash (3)
ox

oT
M (T) - (b, 1) = u(t), TE(Tmin» Tmaxls (4)
where u(1) is an unknown function. We assume that we have data on temperature measurements
for the inner surface of the sample:

Texp ©, 9 =f(v). (5)

One of the methods for determining the unknown boundary condition u(t) for a nonlinear
heat equation is to solve the inverse problem by means of minimization of the root-mean-
square dispersion of calculated temperature values at the points of fixing of thermal sen-
sors Texp from the experimentally measured values f. Two cases are possible: 1) we seek
a solution in a finite dimensional space of parameters; 2) we solve the optimization prob-
lem in a functional space. The first approach is realized when the unknown function u(t)
is approximated by a certain system of basis functions, for example, by piecewise-constant
functions [1], V-splines [2], etc.
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Fig. 1. Reconstruction of the dependence u(t)
fa) M=3; b) 5; ¢) 7; d) 11]: 1) given depen-
dences; 2) reconstructed values (8¢ = 0); 3)

8¢ = 0.05; 4) 0.1.

It is shown in [2] with the help of a computational experiment that the approximation
by cubic V-splines leads to an improvement in the convergence of the solution obtained to
the given exact dependence as compared with the solution of the problem in a functional
space. Therefore, the analysis of characteristics of the accuracy of the inverse heat con-
duction problem below will be conducted for this method of approximation.

Suppose we are given a segment D = [Tpins Tmaxls where tpi, and th,x are the starting
time and completion time of the investigated process, respectively. We divide D intom
equal parts and introduce a uniform mesh:

w = Ty o= T+ RAT, h=—2, —1, ..., m+4 3, AT= (Tnax — Tmuw)/m}.
The function
h+1 (T —‘[)lu_]
B = B (1, gy ey Ty O = 1S AT (6)
= w
where wi' = (1 — 1)(T = T41) o0 (T = TR4e) s ()42 = max{0, ()% '}, is called a V-spline
of (%2-1)-th degree with respect to nodes Ty, Tg41s -5 Tk+g [3].

In order to realize algorithms practically we usually use splines of order not higher
than three. In addition, in solving inverse problems we usually use V-splines with so-called
"natural" boundary conditions:

”

u (Tmln) = 1l (Tma.‘() = 0.

The representation of the function sought by cubic V-splines on a uniform mesh is of
the form

M
u(r) = }: 1,y (1),
Paay

¢ (1) = 28, (T_’J‘ At) -+ B, ('r)s
G2 (1) = —B, (t + A1) + B, (1), (7

@ (1) =By (1), k=3 M—2,

Gat-1 (1) == By (T— (M — 3) A1) — By (1 — (M — 1) A1),

309



where

The f

8y ,a-"’y—o——o_—o-— 8. W
=t L
+
gl e
[ /+/+"’+’—&
gos - g2 =
/X/X’ ’Q/‘/Mr
/x X ., | o /x/X’
X —X
g %
L,x o —2 P
+—3
o —¢
a ! j b |
g g05 g 0 005 A

Fig. 2. Dependence of the accuracy of the solu-
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Fig. 3. Effect of the error of the approxima-
tion §4(M) on the error in the solution of the

inverse heat conduction problem ¢:

a) the de-

pendence of 6, on M: 1) in the space L,; 2) in
the space C°; b) results of the solution of the

inverse heat conduction problem:

1) given val-

ues; 2) reconstructed values (M = 3); 3) M = 53

4) 7; 5) 11; 6) 31.

(4 (0 = By (v — (M — A1) 4 2B, (T — (M — 1) A1), (7)

T="T—Tpm

B, (1) = B, (v — kAT,

Bo(;):

1
BAT3

(v + 2872 — 4T+ AT) 4 6 (12 —4(T+ A +

+(T—2A1%); M=m+1.

unction Bo(T) has the property

>0, —2At< 1< 2t

B, (T = _
» =10, 171>

Taking account of this property simplifies considerably the numerical realization of the.
solution of the inverse heat conduction problem.

sider
assum

parameters approximating M.
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We do not narrow the problem by letting q(t) = 0.

The thickness b in the examples con-

ed is assumed to be equal to 1. Thermophysical characteristics of the material were

ed to be constant A(T) = 1, C(T) = 1.

The computational experiment has shown a connection between the conditioning of the
algorithm of the solution of the inverse heat conduction problem and the number of unknown

In Fig. 1, the results are shown obtained in the reconstruction
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Fig. 4. Effect of the discrepancy error Adf on
the error in the solution of the inverse heat
conduction problem §,: a) error in §y: 1) in
the space Lp; 2) in space C°; b) results of the
solution of the inverse heat conduction problem:
1) given values; 2) reconstructed (ASf = 0); 3)
Asg = 0.25; 4) —0.1; 5) —0.15.

of dependences u(t) approximated exactly by V-splines for M = 3, 5, 7, 11 (Fig. la, b, c,
and d, respectively). The effect of the inaccuracy of measurements due to thermal sensors
was studied, calculated from

fo=Ff@0+Aw), (8)

where A € {0; 0.25]; w is a random variable distributed normally with zero mathematical
expectation and unit dispersion, on the accuracy of the solution of the inverse heat con-
duction problem, calculated as follows:

_ l—uly, (9)
* i,
and
B, = Na—ille (10)
Il elico

The results obtained (Fig. 2) exhibit a sharp impairment in the accuracy of the solution
of the inverse heat conduction problem when the number of approximating parameters increas-
es (especially in C metrics) in spite of the fact that the dependences sought are approxi-
mated exactly by corresponding V-splines.

Based on the calculations performed, we can conclude whether it is advisable to use
for the approximation of the minimal number of nodes M of the V-spline the algorithm which
allows us to achieve the condition for completing the iterative process [1]

J<6f’ (ll)

where J is the value of the minimizing functional; é¢is the error in the temperature mea-
surement metrically consistent with J.

This result is supported by the results obtained by varying the number of unknown
parameters M (Fig. 3). The reconstructed dependence is approximated exactly by the V-spline
for M = 7. Figure 3a shows the minimum of the error for the solution &, in the space L,
for M = 7.

Another factor which affects the accuracy of the solution of the inverse problem is
the error in specifying input data Ad¢. The value of error 8¢ according to (11) determines
the iteration number for which it is advisable to complete the iteration process [1]. Evi-
dently, an overdetermination or underdetermination of the value of 8f results in a certain
violation of the principle of iterational regularization: An algorithm based on conjugate
gradients might cease to be regularizing.

Figure 4 shows the corresponding results of the mathematical simulation. The error in
specifying input data has been calculated as
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As; = =0 (12)
6
where 8§ is the exact value of the error; gf is the value known with an error. The results
demonstrated show that the overdetermination of the level of error results in more appre-
ciable errors in the solution of the inverse heat conduction problem in the metrics C° in
comparison with the underdetermination. In comparing the accuracy §, in the-metrics L,,
overdetermination and underdetermination in 8¢ results in approximately equal results.

NOTATION

T, temperature; C, volumetric heat capacity; A, thermal conductivity; f, additional
temperature measurement; q, heat flux density to the internal body surface; u, heat flux
density to the external surface; &, measurement error; Tp,y, duration of process; b, body
thickness.
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DEGREE OF INSTABILITY OF .NUMERICAL SOLUTIONS OF INVERSE
HEAT-CONDUCTION PROBLEMS AND ERROR OF EXPERIMENTAL DATA

N. I. Batura UBC 536.6

A method is proposed for estimating the error of the results-obtained in:ana-
lyzing experimental data using the solutions of nonsteady boundary inverse
heat-conduction problems.

An important aspect of the applied use of the solution of inverse heat-conduction prob-
lems is the question of determining the error of the results.obtained [1-3]. In the present
work, a solution of this problem is proposed for a sufficiently broad class of nonsteady
boundary inverse heat-conduction problems in a linear formulation, expressed as an integral
equation

T
fa06a—ndt=Ty@—1, (1)
b

where'TG(T) is the temperature dependence, measured with an error-of 8T; T, is the initial

temperature; G(t) = (8/3t){U(1)].

Solution of Eq. (1) by approximating the desired heat flux as a piecewise-constant
function (direct algebraic method [1}) is expressed by the following recurrence relation

1 i—1
q; = —51— (Ti'—‘To_‘g] (IiGi—j-H)’ i=12 ..,m (2)

Here T; = Tg(tj), 14 = iAT; qj is the heat flux in the i-th time interval (t5-;, Ty).
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