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EFFECT OF DIFFERENT FACTORS ON THE ACCURACY OF THE SOLUTION 

OF A PARAMETRIZED INVERSE PROBLEM OF HEAT CONDUCTION 

O. M. Alifanov and A. V. Nenarokomov UDC 536.24 

Results are presented for a mathematical simulation of the effect of the error 
in approximation of the estimated function, the error in temperature measure- 
ments, and the error in specifying measurements on the accuracy of the solution 
of the parametrized boundary-value inverse problem. 

Methods based on solving boundary-value inverse problems of heat conduction are widely 
used at present in the experimental investigation of processes of heat interaction of a sol- 
id body with the surrounding medium. In these problems we seek thermal boundary conditions 
and restore the temperature field in the body based on results of thermal measurements~ at 
separate internal points. 

In many cases heat transfer in systems being investigated can be described with accur- 
acy sufficient for practical purposes by the one-dimensional nonlinear heat equation 

OT _ 0 ( X ( T ) O T )  
c ( r )  O~ Ox , --~-x ' T = T ( x ,  ~), xE(0, b), TE(xmin ' Cmax]. (1)  

As boundary  c o n d i t i o n s  f o r  (1)  we s p e c i f y  t h e  i n i t i a l  t e m p e r a t u r e  d i s t r i b u t i o n  

T(x, 0) ..... T 0(x), x~[0, b] (2)  

and boundary  c o n d i t i o n s  of  t h e  second k ind  

--L(T) 0-~T (0, ~) .... q(~), ~E(Xmtn, r (3) 
ux 

Or (b (4)  

where u(~) is an unknown function. We assume that we have data on temperature measurements 
for the inner surface of the sample: 

~xp (o, ~) = t (~). (5)  

One of the methods for determining the unknown boundarycondition u(~) for a nonlinear 
heat equation is to solve the inverse problem by means of minimization of the root-mean- 
square dispersion of calculated temperature values at the points of fixing of thermal sen- 
sors Tex p from the experimentally measured values f. Two cases are possible: i) we seek 
a solution in a finite dimensional space of parameters; 2) we solve the optimization prob- 
lem in a functional space. The first approach is realized when the unknown function u(r) 
is approximated by a certain system of basis functions, for example, by piecewise-constant 
functions [i], V-splines [2], etc. 
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Fig. i. Reconstruction of the dependence u(T) 
[a) M = 3; b) 5; c) 7; d) ii]: i) given depen- 
dences; 2) reconstructed values (6f = 0); 3) 
6f = 0.05; 4) 0.i. 

It is shown in [2] with the help of a computational experiment that the approximation 
by cubic V-splines leads to an improvement in the convergence of the solution obtained to 
the given exact dependence as compared with the solution of the problem in a functional 
space. Therefore, the analysis of characteristics of the accuracy of the inverse heat con- 
duction problem below will be conducted for this method of approximation. 

Suppose we are given a segment D = [~min, ~max], where ~min and ~max are the starting 
time and completion time of the investigated process, respectively. We divide D into m 
equal parts and introduce a uniform mesh: 

W =.: {'rh == 1:rain @ kAl:, /r .= - - 2 ,  - -  1 . . . . .  m -{- 3, AT := (l:ma x - -  "t'mtn)/ra } . 

The function 

~'+~ (.~o - -  -~)i  -~  ' 
B " - l l  = BU--J)(~k, ~J,+l . . . .  T/,~.Z, T) - -  l (6) 

where w k' = (z - ~k)(~ - ~k+z) ... (~ - rk+s (.)+g-z = max{0, (.)~-i}, is called a V-spline 
of (g-l)-th degree with respect to nodes <k, ~k+1, .... Zk+ ~ [3]. 

In order to realize algorithms practically we usually use splines of order not higher 
than three. In addition, in solving inverse problems we usually use V-splines with so-called 
"natural" boundary conditions: 

." ( t in . , )  ::: "" (t, , ,~.) =- 0. 

T h e  r e p r e s e n t a t i o n  o f  t h e  f u n c t i o n  s o u g h t  b y  c u b i c  Y - s p l i n e s  o n  a u n i f o r m  m e s h  i s  o f  
t h e  f o r m  

M 

u (t)  = ~ uj, q),, (t) ,  
k:- I  

~i (T) - -  2B0 ( } - +  A t )  + B,, ( ~ ,  

,~._~ (-~) = - - B o  (-~ + A~) + Bo ( 5 ,  (7) 

~,~ (~) = Bj,._I (i), le :-: 3, 34 - -  2, 

qc:~_ : (x) ~: B,} (~-- ( M  - -  3) AT) - -  /3 0 (T- - -  ( M  - -  1) AT), 
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Fig. 2. Dependence of the accuracy of the solu- 
tion on the  accuracy  of  the  i n i t i a l  da ta  [a) in  
space La; b) in space C~ 1) M = 3; 2) 5; 3) 
7; 4) ii. 
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Fig. 3. Effect of the error 
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of the approxima- 
tion 6A(M) on the error in the solution of the 
inverse heat conduction problem ~u: a) the de- 
pendence of 6 u on M: i) in the space L2; 2) in 
the space C~ b) results of the solution of the 
inverse heat conduction problem: i) given val- 
ues; 2) reconstructed values (M = 3); 3) M = 5; 
4) 7; 5) 11; 6) 31, 

%: (T) = B,, (C-- (M - -  2)A-0 + 2B. ( 7 - -  (M - -  ]) AT), 

D 

T X - -  Tmln; 

B,, (~) = Bo (; - -  kay)', 
1 

Bo (7) = ~ ((~-q- 2AT)~_ -- 4(Tq- AT)~_ + 6 (7)$ -- 4 (~--+- A~)~ q- 

+(7~2A'~)~_); M = m +  1. 

(7) 

The function Bo(r) has the property 

_ I~0, --2AT<7<2A~ 

Bo (0  = [ = 0 ,  I~! ~ 2A~. 

Taking account of this property simplifies considerably the numerical realization of the 
solution of the inverse heat conduction problem. 

We do not narrow the problem by letting q(~) = 0. The thickness b in the examples con- 
sidered is assumed to be equal to I. Thermophysical characteristics of the material were 
assumed to be constant ~(T) = i, C(T) ffi i. 

The computational experiment has shown a connection between the conditioning of th~ 
algorithm of the solution of the inverse heat conduction problem and the number of unknown 
parameters approximating M. In Fig. I, the results are shown obtainedin the reconstruction 
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Fig. 4. Effect of the discrepancy error A6f on 
the error in the solution of the inverse heat 
conduction problem 6u: a) error in 6u: i) in 
the space L2; 2) in space C~ b) results of the 
solution of the inverse heat conduction problem: 
i) given values; 2) reconstructed (A6f = 0); 3) 
A6f = 0.25; 4) --0.i; 5) --0.15. 

of dependences u(~) approximated exactly by V-splines for M = 3, 5, 7, ii (Fig. la, b, c, 
and d, respectively). The effect of the inaccuracy of measurements due to thermal sensors 
was studied, calculated from 

f(T) : [ (T) (1 :t- A~), (8)  

where A e [0; 0.25]; ~ is a random variable distributed normally with zero mathematical 
expectation and unit dispersion, on the accuracy of the solution of the inverse heat con- 
duction problem, calculated as follows: 

and 

t1~--u lIL~ (9) 
I] u IIL, 

G: II J--~z llco (i0) 

!l u llco 

The results obtained (Fig. 2) exhibit a sharp impairment in the accuracy of the solution 
of the inverse heat conduction problem when the number of approximating parameters increas- 
es (especially in C metrics) in spite of the fact that the dependences sought are approxi- 
mated exactly by corresponding V-splines. 

Based on the calculations performed, we can conclude whether it is advisable to use 
for the approximation of the minimal number of nodes M of the V-spline the algorithm which 
allows us to achieve the condition for completing the iterative process [i] 

J<@, (ll) 

where J is the value of the minimizing functional; 6f is the error in the temperature mea- 
surement metrically consistent with J. 

This result is supported by the results obtained by varying the number of unknown 
parameters M (Fig. 3). The reconstructed dependence is approximated exactly by the V-spline 
for M = 7. Figure 3a shows the minimum of the error for the solution 6 u in the space L 2 
for M = 7. 

Another factor which affects the accuracy of the solution of the inverse problem is 
the error in specifying input data A6f. The value of error ~f according to (ii) determines 
the iteration number for which it is advisable to complete the iteration process [i]. Evi- 
dently, an overdetermination or underdetermination of the value of 6f results in a certain 
violation of the principle of iterational regularization: An algorithm based on conjugate 
gradients might cease to be regularizing. 

Figure 4 shows the corresponding results of the mathematical simulation. The error in 
specifying input data has been calculated as 
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where 6f is the exact value of the error; 6f is the value known with an error. The results 
demonstrated show that the overdetermination of the level of error results in more appre- 
ciable errors in the solution of the inverse heat conduction problem in the metrlcs C o in 
comparison with the underdetermination. In comparing the accuracy 6 u in the metrics L2, 
overdetermination and underdetermination in 6f results in approximately equal results. 

NOTATION 

T, temperature; C, volumetric heat capacity;k, thermal conductivity; f, additional 
temperature measurement; q, heat flux density to the internal body surface; u, heat'flux 
density to the external surface; 6f, measurement error; ~max, duration of process; b, body 
thickness. 
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DEGREE OF INSTABILITY OFNUMERICAL SOLUTIONS OF INVERSE 

HEAT-CONDUCTION PROBLEMS AND ERROR OF EXPERIMENTAL DATA 

N. I. Batura UDC 536.6 

A method is proposed for estimating t.he error of the results obtained in ~ana- 
lyzing experimentaldata using the solutions ofnonsteady boundary inverse 
heat-conduction problems. 

An important aspect of the applied use of the solution of inverse heat-conduction prob- 
lems is the question of determining the error of the results obtained [1-3]. In the present 
work, a solution of this problem is proposed for a sufficiently broad class of nonsteady 
boundary inverse;heat-conduction problems in a linear formulation, expressed as an integral 
equation 

J" q (t) 6 (-~ - -  t) a t  = T6 ('0 - -  r . ,  ( 1 )  
0 

where T6(~) is th~ temperature dependence, measured with an error0f 6T; To is the initial 
temperature; G(T) = (8/~)[U(T)]. 

Solution of Eq. (i) by approximating the desired heat flux as a piecewise,constant 
function (direct algebraic method [i]) is expressed by the following recurrence relation 

l--! 

qi = Gtl . . . . .  (T, To- -  ~i=, qjG,_i+,), i 1, 2 . . . .  , m. (2) 

Here T i = T6(xi) , ~i = iA~; qi is the heat flux in the i-th time interval (~i-I, xi). 
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